首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6130篇
  免费   668篇
  2021年   92篇
  2019年   52篇
  2018年   71篇
  2016年   115篇
  2015年   166篇
  2014年   199篇
  2013年   264篇
  2012年   333篇
  2011年   342篇
  2010年   188篇
  2009年   166篇
  2008年   198篇
  2007年   263篇
  2006年   243篇
  2005年   193篇
  2004年   207篇
  2003年   235篇
  2002年   192篇
  2001年   226篇
  2000年   189篇
  1999年   157篇
  1998年   79篇
  1997年   64篇
  1996年   70篇
  1995年   83篇
  1994年   72篇
  1993年   64篇
  1992年   120篇
  1991年   112篇
  1990年   115篇
  1989年   94篇
  1988年   107篇
  1987年   98篇
  1986年   69篇
  1985年   103篇
  1984年   74篇
  1983年   73篇
  1982年   55篇
  1980年   57篇
  1979年   81篇
  1978年   81篇
  1977年   48篇
  1976年   63篇
  1975年   72篇
  1974年   64篇
  1973年   62篇
  1972年   64篇
  1971年   53篇
  1970年   48篇
  1969年   53篇
排序方式: 共有6798条查询结果,搜索用时 15 毫秒
91.
Methods have been developed for the measurements of catalase and superoxide dismutase (SOD) in single, isolated muscle fibers. These fibers are also classified according to fiber type. Catalase is determined using a fluorescent method for the measurement of hydrogen peroxide consumed. SOD measurements are carried out using a modification of established techniques whereby the inhibition of oxidation of epinephrine by SOD is assayed fluorometrically. Both enzymes may be determined in submicrogram samples of dried muscle. This approach avoids the complication of the inclusion of nonmuscle tissue with varying enzymatic activities which is frequently experienced when using homogenates of muscle, particularly diseased muscle. In addition, these techniques can be used to determine the inherent variation in SOD and catalase activities within individual fibers of the same fiber type. The Km and Vmax for catalase, determined using homogenates of human muscle, were found to be 12 mM and 1.45 mumol/min/mg dry wt, respectively. Catalase of muscle was inhibited 50% by 2 microM sodium azide. Mn-SOD contributes less than one-fifth of the total SOD activity. Therefore the activity is largely due to the Cu-Zn form of SOD. These methods are applicable to a wide variety of tissues.  相似文献   
92.
The onset of peripheral sympathetic neuronal function is thought to provide trophic regulatory signals for development of adrenergic target tissues. In the current study, we examined the effects on lung development of neonatal sympathectomy with 6-hydroxydopamine. The completeness of the lesion and effectiveness in reducing sympathetic input to the tissue were confirmed by direct measurement of norepinephrine levels and turnover. Despite the denervation, no evidence of beta-receptor up-regulation was found; in fact, receptor binding sites tended to be reduced throughout development. The cyclic AMP response to isoproterenol challenge was initially suppressed in the lesioned animals, but became supersensitive even in the face of reduced receptor binding capabilities. Evidence was also obtained for ontogenetic abnormalities in the ornithine decarboxylase/polyamine system, which is partially controlled by beta-adrenergic input and which regulates macromolecule synthesis in replicating and differentiating cells. Eventually, the alterations were reflected in aberrant developmental patterns of DNA, RNA and protein in the lung. These results indicate that sympathetic neurons influence the biochemical development of the lung and may serve to program permanently the relationships among receptor sites, receptor coupling to cellular function, and control of cell maturation.  相似文献   
93.
94.
The HUELLENLOS (HLL) gene participates in patterning and growth of the Arabidopsis ovule. We have isolated the HLL gene and shown that it encodes a protein homologous to the L14 proteins of eubacterial ribosomes. The Arabidopsis genome also includes a highly similar gene, HUELLENLOS PARALOG (HLP), and genes for both cytosolic (L23) and chloroplast ribosome L14 proteins. Phylogenetic analysis shows that HLL and HLP differ significantly from these other two classes of such proteins. HLL and HLP fusions to green fluorescent protein were localized to mitochondria. Ectopic expression of HLP complemented the hll mutant, indicating that HLP and HLL share redundant functions. We conclude that HLL and HLP encode L14 subunits of mitochondrial ribosomes. HLL mRNA was at significantly higher levels than HLP mRNA in pistils, with the opposite pattern in leaves. This differential expression can explain the confinement of effects of hll mutations to gynoecia and ovules. Our elucidation of the nature of HLL shows that metabolic defects can have specific effects on developmental patterning.  相似文献   
95.
96.
Using neuronal nuclei (N1) isolated from cerebral cortices of 15-day-old rabbits the incorporation of [3H]arachidonate into N1 lipids was followed in vitro. Arachidonate was principally incorporated into triacylglycerol and phosphatidylinositol. When low concentrations (32 mM) of Tris-HC1 (pH 7.4) were used, rates of total arachidonate incorporation were small and phosphatidylinositol received the bulk (greater than 84%) of the arachidonate. When the concentration of Tris-HC1 (pH 7.4) or, in certain cases, the concentration of arachidonate was increased, there was a rise in total arachidonate incorporation into N1, with an increasing proportion of radioactivity entering triacylglycerol until it was the predominantly labelled lipid. Using other buffers (phosphate, imidazole, HEPES, pH 7.4), the shift from phosphatidylinositol to triacylglycerol as principal labelled lipid, with buffer concentration, was not as marked as with Tris-HC1 (pH 7.4). When the buffer concentration was maintained at 107 mM and the pH was lowered to 6.5, the three amine-containing buffers showed a sizeable decline in arachidonate incorporation into N1 lipids and a corresponding decrease in triacylglycerol labelling. The proportion of the total radioactivity in N1 phosphatidylinositol rose as the pH declined. Of the buffers used, Tris-HC1 showed the greatest changes over the pH range. Based upon pK values for the amine buffers, it is suggested that an increased proportion of the protonated amine may be inhibitory to arachidonate incorporation in N1. Studies of acyl-CoA synthetase in N1 indicated this enzyme as the site of the inhibition.  相似文献   
97.
Glycosylated equine prolactin (G-ePRL) and nonglycosylated ePRL were purified to homogeneity from side fractions obtained during isolation of LH/FSH from horse pituitaries. Both PRL forms were isolated together in high yield by the isolation procedure used for glycosylated porcine PRL/(G-pPRL) and pPRL, involving acetone extraction/precipitation, NaCl and isoelectric precipitation, and gel filtration. Purification of G-ePRL required additional Con A chromatography. The N-terminal amino acid sequencing for 32 cycles of G-ePRL and ePRL resulted in sequences identical to the known primary structure of ePRL. Based on MALDI mass spectrometry analysis and SDS-PAGE mobilities,G-ePRL and ePRL had estimated molecular weights of 25,000 and 23,000 Da, respectively. G-ePRL displayed only 60% of the immunoreactivity of ePRL in homologous radioimmunoassay. Using the Nb2 lymphoma cell bioassay, ePRL was found to have about l/30th the mitogenic activity of bovine PRL; G-ePRL was approximately l/10th as active as ePRL. Glycosylation of G-ePRL at Asn31 was confirmed by isolation and sequence analysis of an enzymatically derived G-ePRL glycopeptide spanning residues 29–37. Monosaccharide compositions of intact G-ePRL and this glycopeptide were very similar (Man3, GlcNAc2, GalNAc1, Fuc0.6, Gal0.2, NeuAc0.15) and resembled that of G-pPRL. The glycopeptide contained one sulfate residue as determined by ion chromatography after acid hydrolysis, indicating the presence of a sulfated monosaccharide. Comparative carbohydrate analysis of G-ePRL and other G-PRL preparations suggests that the functionally significant Asn31 carbohydrate unit is a fucosylated complex mono- and/or biantennary oligosaccharide terminating with a sulfated GalNAc residue and two or three Man residues.  相似文献   
98.
Sport for tall.     
  相似文献   
99.
Extensive dieback in dominant plant species in response to climate change is increasingly common. Climatic conditions and related variables, such as evapotranspiration, vary in response to topographical complexity. This complexity plays an important role in the provision of climate refugia. In 2008/2009, an island‐wide dieback event of the keystone cushion plant Azorella macquariensis Orchard (Apiaceae) occurred on sub‐Antarctic Macquarie Island. This signalled the start of a potential regime shift, suggested to be driven by increasing vapour pressure deficit. Eight years later, we quantified cover and dieback across the range of putative microclimates to which the species is exposed, with the aim of explaining dieback patterns. We test for the influence of evapotranspiration using a suite of topographic proxies and other variables as proposed drivers of change. We found higher cover and lower dieback towards the south of the island. The high spatial variation in A. macquariensis populations was best explained by latitude, likely a proxy for macroscale climate gradients and geology. Dieback was best explained by A. macquariensis cover and latitude, increasing with cover and towards the north of the island. The effect sizes of terrain variables that influence evapotranspiration rates were small. Island‐wide dieback remains conspicuous. Comparison between a subset of sites and historical data revealed a reduction of cover in the north and central regions of the island, and a shift south in the most active areas of dieback. Dieback remained comparatively low in the south. The presence of seedlings was independent of dieback. This study provides an empirical baseline for spatial variation in the cover and condition of A. macquariensis, both key variables for monitoring condition and ‘cover‐debt’ in this critically endangered endemic plant species. These findings have broader implications for understanding the responses of fellfield ecosystems and other Azorella species across the sub‐Antarctic under future climates.  相似文献   
100.
The bacterial flagellar motor powers the rotation that propels the swimming bacteria. Rotational torque is generated by harnessing the flow of ions through ion channels known as stators which couple the energy from the ion gradient across the inner membrane to rotation of the rotor. Here, we used error‐prone PCR to introduce single point mutations into the sodium‐powered Vibrio alginolyticus/Escherichia coli chimeric stator PotB and selected for motors that exhibited motility in the presence of the sodium‐channel inhibitor phenamil. We found single mutations that enable motility under phenamil occurred at two sites: (i) the transmembrane domain of PotB, corresponding to the TM region of the PomB stator from V. alginolyticus and (ii) near the peptidoglycan binding region that corresponds to the C‐terminal region of the MotB stator from E. coli. Single cell rotation assays confirmed that individual flagellar motors could rotate in up to 100 µM phenamil. Using phylogenetic logistic regression, we found correlation between natural residue variation and ion source at positions corresponding to PotB F22Y, but not at other sites. Our results demonstrate that it is not only the pore region of the stator that moderates motility in the presence of ion‐channel blockers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号